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Abstract—Sampling social graphs is critical for studying things
like information diffusion. However, it is often necessary to
laboriously obtain unbiased and well-connected datasets because
existing survey algorithms are unable to generate well-connected
samples, and current random-walk based unbiased sampling
algorithms adopt rejection sampling, which heavily undermines
performance.This paper proposes a novel random-walk based
algorithm which implements Unbiased Sampling using Dummy
Edges (USDE). It injects dummy edges between nodes, on which
the walkers would otherwise experience excessive rejections
before moving out from such nodes. We propose a rejection
probability estimation algorithm to facilitate the construction
of dummy edges and the computation of moving probabilities.
Finally, we apply USDE in two real-life social media: Twitter
and Sina Weibo. The results demonstrate that USDE generates
well-connected samples, and outperforms existing approaches in
terms of sampling efficiency and quality of samples.

I. INTRODUCTION

Social media have gained tremendous popularity in recent
years. In order to characterize, optimize and simulate infor-
mation diffusion within such networks, it is often necessary
to collect realistic datasets [1][2]. However, the huge size of
these networks makes it very hard to gain a true snapshot of
the complete graph. Hence, it becomes necessary to obtain an
unbiased and well-connected subgraph of the network. Here, a
subgraph sample is unbiased if every user in the social media is
sampled with equal probability, as widely adopted in literature
[3][4]; and a sample is said to be well-connected if it has only
a few connected components.

Sampling networks has been heavily studied in the literature
(§II). Survey sampling approaches (like stratified sampling
[5] or uniform sampling [6]) and those using random jumps
during sampling [4], while being able to provide unbiased
estimations of individual node attributes (like node degree),
fail to generate well-connected samples. Another kind of
sampling, called random-walk sampling, while being able
to provide well-connected samples, generates biased towards
high-degree nodes. Several algorithms, including Metropolis-
Hastings Random Walk (MHRW) [3] and its variants [7][8],

were proposed to adapt random-walk based sampling to gener-
ate unbiased samples using the rejection sampling procedure.

The rejection sampling procedure explicitly rejects mov-
ing to high-degree nodes by increasing the probability of
(re)sampling low-degree nodes. This procedure incurs the
cost and delay of sampling without gathering information in
exchange, especially when applied to online social media with
local disassortative mixing pattern, where users tend to follow
power-users (like celebrities) with degrees that are orders of
magnitude larger [9][10]. In such networks, the random walk-
ers will be trapped in the low-degree nodes for a long time due
to the rejection sampling of high-degree nodes, and meanwhile
the low-degree nodes will be repeatedly sampled wastefully.
Unfortunately, if these repetitions are removed, MHRW and
its variants using rejection sampling fail to provide unbiased
samples [11].

The above facts motivate us to propose a new sampling algo-
rithm (§III): Unbiased Sampling with Dummy Edges (USDE).
We aim to provide a good quality of samples (measured by
the ability to provide unbiased and well-connected subgraphs)
with high sampling efficiency (measured by the sampling
convergence and the speed of discovering new nodes). USDE
is a random-walk based algorithm that exploits artificially
injected dummy edges (§III-A). The intuition is that, instead of
rejecting high-degree nodes, the walkers move through dummy
edges to other nodes, on which the walkers would otherwise
experience excessive rejections. Note that the dummy edges
are not included in the final samples and are only used in
the sampling process temporarily. We propose a rejection
probability (also called self-sampling probability) estimation
algorithm to facilitate the construction of dummy edges and
the computation of traversal (moving) probabilities (§III-B).
By carefully assigning moving probabilities between adjacent
nodes that are connected by either original edges or dummy
edges, we show that our algorithm is able to generate unbiased
and well-connected samples. The evaluation on two real-life
social media, Twitter and Sina Weibo, further validates the
efficiency (§IV).

II. BACKGROUND AND MOTIVATION

A. Background

Due to a low level of reciprocity [10], social media are
usually abstracted as directed graphs. However, from the
perspective of sampling, it has been shown in [11][8] that a
social media network can be viewed as an undirected graph:
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G = (V,E), where V is the set of nodes representing users,
and E is the set of bidirectional edges that are obtained by
treating unidirectional edges as bidirectional ones. Another
prominent feature of online social media is that nodes with a
very high degree (e.g. celebrities) may be surrounded by many
low-degree nodes [10][9], implying high local disassortativity.
Here, dissasortativity captures the phenomenon that nodes tend
to be connected with other nodes with different degrees [12].

B. Motivation

The existence of local disassortative nodes makes unbiased
sampling challenging. Considering a high-degree node u that
it is surrounded by many low-degree nodes, crawlers in the
native random-walk sampling will move from u to its low-
degree neighbor v with a low probability. And once the
crawlers reach low-degree nodes, the native sampling prefers
high-degree nodes as the next hop. This leads to sampling bias
towards high-degree nodes. To address this problem, two kinds
of methods can be adopted. One is using random jumps [11],
[4], i.e. allowing the crawler to jump to a randomly chosen
node (instead of following edges). Random jumps essentially
decrease the sampling probability of high-degree nodes, while
increase the probability of low-degree ones. Random jumps,
however, will yield many small and isolated components in
the final samples.

The other solution is using rejection sampling, like
MHRW [3], i.e. rejecting to move to high-degree nodes but
sampling low-degree nodes many times (called self-sampling
here). Self-sampling increases the sampling probability of low-
degree nodes and implicitly reduces the probability of high-
degree nodes. However, for a network with local disassorta-
tivity, the self-sampling probability of low-degree nodes will
be extremely high, because crawlers must experience exces-
sive rejections of moving towards high-degree neighbors in
order to compensate the sampling probabilities of low-degree
nodes. The excessive rejections greatly hurts the efficiency of
discovering new nodes.

III. UNBIASED SAMPLING WITH DUMMY EDGES

This section presents our proposed sampling algorithm,
USDE. The idea is to keep the connectivity and unbiased
nature of samples obtained by rejection sampling algorithms
(like MHRW), while avoiding excessive rejections (or self-
samplings). To this end, we add dummy edges between nodes
that would otherwise experience high self-samplings, and
amortize the self-sampling probabilities of individual nodes
to moving probabilities on the dummy edges. Importantly,
dummy edges are only used during the sampling process to
allow the sampling crawler to move to another node, and they
are not involved in the final sample. Table I lists the notations
used throughout of this paper.

A. Dummy Edges

Dummy edges are built between nodes that experience ex-
tensive self-sampling (rejection) probabilities in random-walk
based rejection samplings. Suppose the crawler is currently on

TABLE I: Notations in the description of USDE

Notation Definition
V ′ set of nodes having been visited by sampling walkers
ki degree of node i in the abstracted undirected network
Pi,j moving probability from node i to j through one step
P

(n)
i,j moving probability from node i to j through n steps
πi probability that node i can be sampled
Li self-sampling probability of node i, i.e. Pi,i
U(i) set of nodes that connect with i through dummy edges
S(i) set of nodes that connect with i through original edges
DPi,j moving probability from i to j via the dummy edge
LPi lower bound of node i’s self-sampling probability
Er(k) the average node degree with sampling repetitions
Eu(k) the average node degree without sampling repetitions

node i; the candidate nodes for building dummy edges from i
are the previously visited nodes’ neighbors that have not been
visited yet and have non-zero self-sampling probabilities. In
this way, a node that connects with i through a dummy edge
once being visited cannot form new connected components,
since at least one of its neighbors has been visited. This avoids
jumping to random nodes, and therefore avoids the generation
of many small components.

B. Moving Probability in USDE

At first, we describe the calculation of the moving proba-
bility from node i to node v in USDE using Eq. 1:

Pi,v =


min( 1

kv
, 1
ki
) if v ∈ S(i)

DPi,v, if v ∈ U(i)

1−
∑

x∈S(i)

Pi,x −
∑

y∈U(i)

Pi,y if v = i

0 otherwise

(1)

where U(i) is the set of nodes that have dummy edges with i,
S(i) is the set of original neighbors of i, and DPi,j = DPj,i.

We have showed in our previous work [7] that the suffi-
cient and necessary condition for unbiased (nodal) sampling
in a network G that has at least one node with non-zero
clustering coefficient is: (1) if Pi,j > 0, then Pj,i > 0;
(2) ∀j ∈ V,

∑|V |
i=1 Pi,j = 1, where |V | is the number

of nodes in network G. The above moving probability of
USDE meets these two conditions, because following Eq.
1: Pi,j = Pj,i and thus if Pi,j > 0, then Pj,i > 0; and
∀i ∈ V,

∑|V |
j=1 Pj,i =

∑|V |
j=1 Pi,j = 1. Hence, USDE generates

unbiased (nodal) samples where each node is sampled with
equal probability.

C. Dummy Edge Addition

The selection of nodes to build dummy edges is critical in
USDE. The nodes to which dummy edges can be built from
the currently visited node are the previously visited nodes’
neighbors that have a non-zero self-sampling probability and
have not yet been visited by the sampling crawler. However,
finding such nodes is challenging because we are unable
get the exact self-sampling probability of an unvisited node.
Instead, we estimate the lower bound of the self-sampling
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probability for an unvisited neighbor based on the degree of
the current visited node and the degree of this neighbor.

From Eq. 1, we can infer that if there is a neighbor u of node
i with degree ku > ki, then the self-sampling probability of
i without dummy edges is at least ( 1

ki
− 1

ku
). Following this

observation, the lower bound of an unvisited node i’s self-
sampling probability without dummy edges, LPi, is:

LPi =
∑

v∈{S(i)∩V ′}(
1
ki
− 1

kv
) where kv > ki (2)

where S(i) is the neighbor set of i and V ′ is the set of nodes
that have been visited.

Fig. 1: Estimating self-sampling probability

Fig. 1 illustrates how the lower bounds are estimated during
the sampling process. The node degrees are marked on the
nodes and the node IDs are labeled beside the nodes. Let’s
assume that, before step T , the self-sampling probability for
all nodes is 0. At step T , the crawler visits node w. Node j and
node m are neighbors of w and kj < kw, km < kw. Hence,
we can estimate that LPj = 1

kj
− 1

kw
= 1

20 −
1
50 = 0.03 and

LPm = 1
km
− 1

kw
= 1

10 −
1
50 = 0.08 at step T . At the next

step T + 1, the crawler visits y. We update the estimation of
LPj because j is also a neighbor of y and kj < ky . The LP
value of j is updated as LPj = 0.03+ 1

20 −
1
30 = 0.0467. We

are unable to estimate LPn at T + 1 as kn > ky .
During the process of sampling, we use a queue Q to record

the node ID and the estimated lower bound of self-sampling
probability, LPv , for each unvisited node v with LPv > 0.
The nodes in this queue are candidate nodes for dummy edge
addition from the currently visited node.

D. Computation of moving probabilities

When a node i is visited for the first time, we obtain its
self-sampling probability as 1−

∑
x∈S(i) Pi,x−

∑
y∈U(i) Pi,y

according to Eq. 1. U(i) is empty in the case that i has never
been selected for building dummy edges before. If such a
probability is larger than a threshold δ, we pop a tuple (v, LPv)
from Q and add a new dummy edge between node i and v. The
moving probability of the added dummy edge DPi,v (DPv,i)
is computed as Eq. 3.

DPi,v = min(LPv, 1−
∑

x∈S(i)

Pi,x −
∑

y∈U(i)

Pi,y) (3)

We then update LPv with LP
′

v = LPv − DPv,i. If the
updated LP

′

v > 0, we push the updated tuple (v, LP
′

v) back
to Q. Such an estimation method (for the lower bounds of
self-sampling probability) ensures that the sampled subgraphs

are well-connected because all the nodes recorded in Q are
neighbors of previously sampled ones.

The moving probability DPi,v (DPv,i) of the dummy
edge can be significant in the case of large LPv and self-
sampling probability. In this case, the sampling crawler will
wander between i and v for a long time, which prevents
the crawler from finding new nodes. To solve this prob-
lem, rather than pop only 1 tuple, we pop γ (γ > 1)
tuples (v1, LPv1), (v2, LPv2), (v3, LPv3) · · · (vγ , LPvγ ) from
Q at one time, and γ dummy edges are added {i,vj} (j =
1, 2 · · · γ). The moving probability on dummy edge {i, vj}
DPi,vj (DPvj ,i) is computed as Eq. 4.

DPi,vj = min(LPvj ,
1−

∑
x∈S(i) Pi,x −

∑
y∈U(i) Pi,y

γ
) (4)

LPvj is then updated accordingly and the tuples with non-
zero LP s are pushed back to Q. The addition of dummy edges
ceases when the self-sampling probability on i is reduced to
0, or dummy edges to all the γ nodes are added.

The queue Q applies FIFO (First In First Out), which avoids
adding too many dummy edges on a single node. The stored
nodes with fewer dummy edges and larger LP are more
likely to be popped out, reducing self-sampling probabilities
as much as possible. The queue Q is initialized in the first t
iterations of sampling. During this time period, dummy edges
are not added, and the LP s of the visited nodes’ neighbors
are estimated and pushed into Q as dummy edge candidates.

IV. SAMPLING TWITTER AND SINA WEIBO

To confirm the practicality of our technique, we use USDE
to sample Twitter and Sina Weibo, and focus on the quality
of samples and the sampling efficiency.

A. Experiment Setup

Both Twitter and Sina Weibo have a dense numerical ID
space. We randomly generate a number of IDs, and choose
10 IDs that correspond to valid users as the initial seeds for
crawlers. Since the relationship between users might be non-
reciprocal in Twitter and Sina Weibo, we leverage the idea
of “backward edge traversals” [8], where unidirectional edges
are treated as bidirectional ones.

The evaluation of unbias requires the ground truth of user
attributes in Twitter and Sina Weibo. Since we are aiming at
unbias in terms of nodes (as opposed to edges), the ground
truth of user attributes can be estimated using UNI [3]. We
thus uniformly generate a large number of user IDs at random
and use these IDs to query Twitter and Sina Weibo APIs.
During the sampling process, we rely on the APIs provided
by Twitter and Sina Weibo to obtain the information of the
currently visited node’s neighbors.

B. Quality of samples

We first examine the accuracy of estimating the number
of followers in Fig. 2, where the y-axis shows the average
number of followers (normalized by the ground truth). Due to
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Fig. 2: Normalized average number of followers
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Fig. 3: Complementary CDF of followers in samples

the existence of self-samplings, we measure two node degree
metrics: Er(k) — the average node degree when m samplings
on a node are counted as m nodes with identical properties;
and Eu(k) — the average node degree when a node is only
counted once no matter how many times it is sampled. We
observe large variations of Er(k) and Eu(k) for the initial
sampling iterations due to the random choice of seed nodes.
The normalized Er(k) gradually converges to 1 after taking
several hundred iterations. Nevertheless, while the normalized
Eu(k) estimated by USDE in both networks converges close
to 1, the Eu(k) estimated by MHRW is about four times as
high as the ground truth. Such a huge difference is due to
excessive sampling repetitions in MHRW.

Fig. 3 further examines the distribution of followers ob-
tained by sampling algorithms after 2,000 iterations, where
the sampled users are counted uniquely. It is notable that
USDE generates a much closer distribution to UNI (ground
truth for nodal properties) than MHRW. For instance, samples
generated by USDE reveal 93% of users have fewer than 200
followers, close to the the corresponding proportion of ground
truth 95%. Nevertheless, this percentage in samples generated
by MHRW is only 80%.

C. Sampling Efficiency

Our results reveal that, for both Twitter and Sina Weibo,
the average sampling times per node by USDE is close to 2,
much lower than that by MHRW, which is 6-8 and 8-10 for
Twitter and Sina Weibo, respectively.

We finally investigate the efficiency in identifying new user
locations in Fig. 4. USDE consistently identifies many more
new locations than MHRW. For example, USDE identifies
more than 200 cities in Twitter within 1,200 iterations, while
MHRW only identified about 50. The difference between the
two curves in Twitter is more significant than that in Sina
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Fig. 4: Efficiency of identifying location information

Weibo, possibly due to the categories of attributes in Twitter
(world-wide), which are more diverse than the ones in Sina
Weibo (country-wide).

V. CONCLUSION

In this paper, we propose a novel random-walk based sam-
pling algorithm: USDE. It introduces dummy edges between
nodes with high self-sampling probabilities to allow crawlers
to move between nodes, while still keeping the connectivity of
samples. We have detailed the way of building dummy edges
and the computation of moving probabilities. The evaluations
on two real-life social media have demonstrated that, in
comparison with existing algorithms, USDE achieves a better
quality of samples and higher sampling efficiency.
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